调换电容电抗相量图和矢量图阻抗案例摘要

2020-03-23 06:04 来源:万象城网站 点击:

 

  万象城电容器在其导电板上存储能量以电荷的形式。当一个电容器连接在一个直流电源电压上时,它以一个由其时间常数决定的速率充电到所施加电压的值。

  只要供电,电容器将无限期地保持或保持该电荷。电压存在。在该充电过程期间,充电电流 i 流入电容器,电压的任何变化都与电压相反,其速率等于板上电荷的变化率。因此,电容器与流到其板上的电流相反。

  该充电电流与电容器供电电压变化率之间的关系可以在数学上定义为:i = C(dv / dt)其中C是以法拉为单位的电容器的电容值,dv / dt是电源电压相对于时间的变化率。一旦它“完全充电”,电容器就会阻挡任何更多电子流到其板上,因为它们已经饱和,电容器现在就像一个临时存储设备。

  一个纯电容器将保持这种电荷即使直流电源电压被移除,也会无限期地在其板上。然而,在包含“AC电容”的正弦电压电路中,电容器将以由电源频率确定的速率交替地充电和放电。然后,交流电路中的电容器分别持续充电和放电。

  当交流正弦电压施加到交流电容器的极板上时,电容器首先在一个方向充电,然后在相反方向充电改变极性以与交流电源电压相同的速率。电容器两端的电压瞬时变化与以下事实相反:将电荷沉积(或释放)到板上需要一定的时间,并且由 V = Q / C 给出。考虑下面的电路。

  当开关时在上面的电路中闭合,高电流将开始流入电容器,因为在 t = 0 时板上没有电荷。正弦电源电压 V 以最大速率在正方向上增加,因为它在 0 o。由于板上电位差的变化率现在处于其最大值,因此当电子的最大量从一个板移动到另一个板时,流入电容器的电流也将达到其最大速率。

  当正弦电源电压达到波形上的90 o 点时,它开始减速,并且在非常短的时间内,板上的电位差既不增加也不减小因此由于没有电压变化率,电流减小到零。在这个90 o 点,电容器两端的电位差最大( V max ),没有电流流入电容器作为电容器现在充满电,其电极板充满电子。

  在此时刻结束时,电源电压在负向上开始向下朝向零基准线 o 。虽然电源电压本质上仍是正电压,但电容器开始在其极板上放电一些多余的电子,以保持恒定的电压。这导致电容器电流以相反方向或负方向流动。

  当电源电压波形在瞬间180 o 时超过零参考轴点时,变化率或斜率正弦电源电压处于其最大值但处于负方向,因此流入电容器的电流在该时刻也处于其最大速率。同样在这个180 o 点,两个板之间的电荷量均匀分布,两个板之间的电位差为零。

  然后在这个前半周期0 o 至180 o 施加的电压在电流达到其最大正值后的一个周期的四分之一(1 /4)达到其最大正值,换句话说,施加的电压一个纯电容电路“LAGS”电流为四分之一周期或90 o ,如下所示。

  在下半周期180 o 至360 o 期间,电源电压反转在270 o 处朝向其负峰值。此时,板上的电位差既不减小也不增加,电流减小到零。电容器两端的电位差处于其最大负值,没有电流流入电容器,并且电流完全充电与其90 o 点相同,但方向相反。

  当负电源电压开始朝零基准线 o 点正方向增加时,完全充电的电容器现在必须松开一些多余的电子以保持恒定电压,之前和开始放电直到电源电压在360 o 达到零,此时充电和放电过程重新开始。

  从电压和电流波形和上面的描述,我们可以看到,电流总是将电压引导一个周期的1/4或/ 2 = 90 o “异相”由于这种充电和放电过程,电容器之间的差异。然后,交流电容电路中的电压和电流之间的相位关系与我们在前一个教程中看到的交流电感完全相反。

  这种效应也可以用相量图表示,其中在纯电容电路中,电压“LAGS”电流为90 o 。但是,通过使用电压作为参考,我们也可以说电流“LEADS”电压是一个周期的四分之一或90 o ,如下面的矢量图所示。

  有很多不同如何记住纯交流电容电路中流过的电压和电流之间的相位关系,但一种非常简单易记的方法是使用称为“ICE”的助记符表达式。 ICE 代表电流 I 首先在交流电容 C 之前 E 电动势。换句话说,电容器电压之前的电流 I , C , E 等于“ICE”,无论电压从哪个相角开始,这个表达式总是适用于纯交流电容电路。

  因此我们现在知道电容器与电流的电压变化相反当电容器充电和放电时,电子板上的电子与其板上的电压变化率成正比。与电流相反的电阻是其实际电阻,电容中电流的反对称为电抗。

  与电阻类似,电抗以欧姆为单位测量,但是给出符号 X 以区别于纯电阻 R 值,并且由于所讨论的元件是电容器,电容器的电抗称为电容电抗,( X C )以欧姆为单位测量。

  由于电容器的充电和放电与它们之间的电压变化率成比例,电压变化越快,流过的电流就越多。同样,电压变化越慢,电流越小。这意味着交流电容器的电抗与电源频率“成反比”,如图所示。

  其中: X C 是欧姆的电容电抗,是以赫兹为单位的频率, C 是以法拉为单位的交流电容,符号 F 。

  在处理交流电容时,我们还可以用弧度定义容抗,其中欧米茄, 等于2。

  从上面的公式中我们可以看出容性电抗的值和因此,当频率增加时,其整体阻抗(以欧姆为单位)向零减小,就像短路一样。同样,当频率接近零或直流时,电容电抗增加到无穷大,就像开路一样,这就是电容阻断直流的原因。

  容性电抗与频率之间的关系与电容电抗和频率完全相反。感应电抗,( X L )我们在上一个教程中看到过。这意味着容性电抗“与频率成反比”并且在低频时具有高值,在较高频率时具有低值,如图所示。

  电容器的电容电抗随着其板上频率的增加而减小。因此,容抗与频率成反比。电容电抗对抗电流,但电路板上的静电电荷(其交流电容值)保持不变。

  这意味着电容器在每个半周期内更容易完全吸收电路板上的电荷变化。此。